
ED 043 235

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

DOCUNENT RESUNE

Dwyer, T. A.
Teacher-Student Authored CAI
NIWBASIC /CATALYST System.
Pittsburgh Univ., Pa.
National Science Foundation,
(70)
21p.

EN 008 480

Using the

Washington, D.C.

?DRS Price NFSO4,25 BC-$1.15
*Computer Assisted Instruction, Interaction,
Programing, *Programing Languages, *Secondary
Education, Student Developed Naterials, Teacher
Developed Naterials
BASIC, *NEWBASIC CATALYST

ABSTRACT
Using an interactive computer system called

NEWBASIC/CATALYST, both students and teachers can act as authors of
programs. NEWBASIC/CATALYST incorporates an implementation of BASIC,
system-level, interactive features, and a general capability for
extension through use - oriented function attachment. Interacting at
the system level, students can six the advantages of independent or
"solo" mode computing with those of guided or "dual' mode
interaction. Illustrations of this are given. Preliminary experience
with the system was in an urban secondary school setting. (Author /NF)

U.S. beam Of Hum ism i Vent
01 1a Of NUMMI

INSWOMMINSSIMISMOIMIXAMVISNUIVOMINN
PINOINONAMONOMOUNIKPOMSOMOROPINOIS
ROMNINIMMAIWNWORNWONWWWWIN
ommeeNum

Ir Teacher-Student Authored CAI Using the NEWBASIC/CATALYST System
Pr%

(Ni
Pr% T. A. Dwyer

University of Pittsburgh, Pittsburgh, Pa.

ABSTRACT: The pedagogical advantages of a general purpose

interactive system called NEWBASIC/CATALYST are discussed.

NEWBASIC/CATALYST incorporates an advanced implementation

of BASIC, system-level interactive features, and a general

capability for extension through user-oriented function attach-

ment. Application of this last feature to providing a flexible

CAI scan capability is illustrated. Two examples of inter-

action at the system level are given, showing how students can

mix the advantages of independent or "solo" mode computing with

those of guided or "dual" mode interaction. Preliminary ex-

perience with the system in an urban secondary school setting

is discussed.

KEY WORDS AND PHRASES: CAI, BASIC, CATALYST, NEWBASIC, education,

computers in education, extended languages, interactive systems.

CR CATEGORIES: 1.50, 1.51.; 3.32, 4.22.

REFERENCES:

1. Dwyer, T. A. Project Solo: A Statement of Position Regarding
CAI and Creativity. Interface 4, 1 (Feb. 1970), 13-15.

2. Blanc, R. CATALYST: A Computer Assisted Teaching and Learning
System for a General Purpose Time-Sharing System. M.S. Thesis.
University of Pittsburgh (1968).

3. Dwyer, T. A. A Lesson Designers Guide to CATALYST/PIL. Uni-
versity of Pittsburgh (1969).

4. Badger, G. PIL/L: Pitt Interpretive Language for the IBM Sys-
tem/360 Model 50. University of Pittsburgh (revised Feb. 1969).

I

Teacher-Student Authored CAI Using the NEWBASIC/C_ANEWELJErsleat

T. A. Dwyer

University of Pittsburgh

1. INTRODUCTION

The term CAI has come to have a fairly broad meaning for most

educational workers, including the use of computers for drill and

practice, tutorial sessions, simulation, and structured informa-

tion retrieval. There is usually the assumption, however, that the

work of one person (the "author") lies behind a program with which

a second person (the "student") interacts. For most systems there

is the additional unspoken assumption that CAI authors are special-

ists who are distinct from the students and teachers' who use their

product. There have been CAI projects where teachers have been re-

leased to help author programs, but this almost always implies that

these teachers remove themselves from actual classroom experience

during such release.

An additional restriction on authors is that the style, format,

and teaching strategy they employ is effectively prescribed by the

bigger system within,which they work. A quick look at the set of

reference manuals that accompany a specialized CAI system makes it

clear that there are distinct functions within such systems. In

order that such functions may operate with separate staffs, con-

2

straints must be imposed on each group, with the author function

most likely to receive the brunt of these limitations.

It has been our experience that there is considerable nega-

tive reaction to all of this on the part of many educators, simply

because they will have very little control of such systems at the

classroom level, and their students will have none at all. This

last indictment is a serious one for the upper grade levels; today's

high school youth, for example, are very much concerned with the

curricula in which they are to function. The knowledgeable school

administrator is further confounded by the desire to introduce real

"hands -on" computing as a powerful adjunct to much of the curricu-

lum, but at the apparent cost of duplicate systems. He knows that

the drill and practice routines that might fascinate the freshman

could easily become anathema to the "sopho" -more, and that he really

needs the power of a multi-faceted computer utility if technology is

to match the complexity of the real school world.

The purpose of this paper is to report on what appears to be

a viable solution to these problems. The approach described has

been in use for over a year with small test groups. It is now under-

going further development within a large urban school system (Pitts-

burgh) as part of an experiment* in the regional use of computers

for secondary schools.

*
Supported in part by NSF grants GJ 515 and GJ 1077.

3

2. SOME DISTINCTIONS

When talking about computers and learning,
**

we have found it

useful to distinguish between what we call DUAL mode and SOLO mode

usage (a terminology borrowed from the world of flight instruction).

We use the terms to indicate the presence or non-presence of a ped-

agogically intended master program with which a student interacts.

Thus we would classify a simulation as DUAL mode, even though the

pedagogical intent of the master program is certainly at a more sub-

tle level than that of a response-sensitive drill and practice rou-
.

tine. We would classify the writing, debugging, and revision of an

original BASIC program by a student as SOLO mode, since the programs

with which he interacts (e.g. the BASIC compiler and library routines)

are not pedagogically intended. We also consider a student who au-

thors a CAI program such as a simulation or a tutorial to be in SOLO

mode. Finer distinctions within these modes can be found in Ill.

Our general approach has been to encourage the orderly growth

of a central computing "center" in the school (analogous to the

library), in which are found terminals which access a single general-

purpose time-sharing utility. Any one of these terminals can be

used in any of the modes described, with students going as deeply

into the system as their abilities, curiosity, and the curriculum

material guidance we supply permit. Students and teachers also manage

on-line and off-line file storage for the system.

It is our preliminary estimate that the capability of function-

ing in SOLO mode is elicited more readily than much of the

**
The use of computers to support the administrative work of

schools or vocational training for data-processing careers is not an
immediate objective of our present project.

0

4

emphasis on drill, tutorial, and other dual mode CAI would seem to

assume possible. Interestingly enough, however, the best route to

"getting over the hump" into the world of SOLO mode computing for

many students seems to be via such dual mode experience. After

working with another person's tutorial or simulation (preferably

his own teacher's), the student wants to know how it worked. It

has become clear to us that this auestion should always be answer-

able, and within the context of the same system that generated the

initial curiosity. Further, this first move into the world of SOLO

mode computing should be preparatory for, and therefore compatible

with, a later more sophisticated use of the same system for general

purpose algorithmic computing (which, incidentally, some students

are able to undertake almost immediately). We view this latter stage

as very important, and continue to be amazed at the cognitive skills

displayed by students functioning at this level. The present dis-

cussion will be limited, however, to a description of the system

that makes possible and encourages the transitions between these

various levels of computer usage.

3. SYSTEM REQUIREMENTS

There are three general requirements on a system within which

such an educational approach will works

a. Easy system access in all modes.

The simple, self-prompting system commands typical of most time-

shared BASIC processors have proved to be understandable and usable

by even nine and ten year olds. Because the use of such systems is

easy and natural, students can put the bulk of their effort into

5

understanding the content of what they are doing. This is in con-

trast to one educational system we know of that required complex

JCL commands. The students on this system never saw the forest for

the trees.

If we are to allow a mix of dual and solo mode computing on a

single system, with students and teachers continually making trans-

itions between modes, the need for a simple uniform structure for con-

trolling all features of the system is of even greater importance.

This criterion should also apply to other activities on the system,

such as file use, editing, and interactions with other processors.

b. iefxillpctgmpieral.pTlowursecomtingshouldbeavail-

able to all users.

Critics of educational technology worry about a "Hawthorne ef-

fect", pointing out that most innovation falls flat when the novelty

wears thin. Exactly the reverse has been true in the world of real

computing. Von Neumanns prognosis of the endless possibilities of

truly general computing systems has been repeatedly verified. It is

our opinion that the CAI systems of today and tomorrow should possess

all of this potential.

To say this in another way, the elements in the human learning

situation that ought to be most capitalized on in any innovative

program are the internal resources of the learner himself. These

come as standard eqUipment(1) and will work wonders if not stifled

by artificial constraints. The surest way to avoid such inhibition

in the use of technology is to have the unparalleled flexibility of

6

late generation computing systems always on tap for the learner and

his mentors, with a crystal clear invitation to harness this power

any time they deem appropriate.

c. The system should be "aapproachable" a terms of the

educator.

When we first worked with teachers in exploring the use of com-

puters in education, we decided that they should understand what was

going on, and that the best way to bring this about was to teach them

all about "programming". The principle of insisting on understanding

has proved to be correct, but the approach taken was wrong for all

except a mathematically oriented minority. In deciding that the

know-how of the computer scientist be superimposed on the educational

world we were making a mistake analogous to an ill-conceived foreign-

aid program. A little thought shows that it is the school-world

culture that should dominate; its conventions and methods should be

the starting point. Innovation added in this manner stands a much

better chance of surviving the inevitable initial difficulties asso-

ciated with change.

As will be seen below, the concept of DUAL mode computing, with

teachers (and eventually their students) acting as authors has proved

to be a good basis for entry into the total world of computing

for most educators. In retrospect, we find ourselves amazed at not

having realized that a teacher would assimilate the complex world

of computing in terms of the control that is needed in good tutoring

much more readily than from, say, tracing the iterations in a sec-

ond order root finder! What we could not have foreseen is the

7

ingenious way in which teacher-organized groups of students continue

to extend their work, As a result of these continual improvements,

the problem of obsolesence of DUAL type programs because of expo-

sure to large student populations is no longer one of our

concerns.

4. THE NEWBASIC/CATALYST SYSTEM

Our current working version of a system that meets these cri-

teria evolved from a prototype developed at the University of Pitts-

burgh by interfacing a CAI processor called CATALYST 120] with PIL

14], an interpretive language based on JOSS. A considerably im-

proved system based on this experience has been implemented by

Cosa -Share Inc. of Ann Arbor for use in our large school tests.

The algorithmic language employed is a powerful extension of BASIC

called NEWBASIC or NBS. In addition to all the niceties one might

expect in a modern BASIC (full string manipulation, extensive func-

tion availability, direct mode, multiple statements, picture formats,

full Boolean control, multiple data types, suffixes such as "if",

"unless", "while", "until", and "for", etc.) NBS has two other dis-

tinctive features.

The first involves user defined functions which provide unlimited

extensibility of the language. Section 5 will illustrate the appli-

cation of this idea to fitting the language to the needs Of non-

numeric tutorial writing.

The second new feature is one that is an important first step

in making the entire system user-interactive, rather than just

8

certain aspects of the NBS processor. For example, a user in NBS

can go into and out of the editor, using its full power,

without losing his place in what he was doing in NM. Using

the editor is no longer a confusing operation; its as simple as

picking up an eraser when the need dictates. Similarly, appropriate

executive system functions (e.g. looking at a directory of files)

can be interspersed with x primary activity such as creating or

running NBS programs, again without losing place.

From the pedagogical point of view, by far the most important

example of this second concept occurs when a student, who is inter-

acting (in DUAL mode) with someone sloes tutorial or simulation

program (written in NBS) , is allowed to go into his own NBS (where

he proceeds to function in SOLO mode) and then return to the ori-

ginal interaction without missing a beat. Simple examples of this wil

be given in Section 6; we have found the power of this feature to

be a significant break-through in changing the attitude of many

educators toward CAI.

5. EXTENDING NBS TO FACILITATE CAI AUTHORSHIP

Insofar as any BASIC implementation provides general algorithmic

capability, it can be used to author dual mode programs, that is,

programs which assist a user other than the author in achieving

some educational goal. For many subjects the language constructs

are really inadequate however, and fail to meet our third criterion.

To illustrate some of the difficulties and how they can be overcome,

we will examine one of the author guidance forms we have suc-

9

cessful4 used to coordinate the efforts of a beginning group of tutorial

writers (frequently a team of students under the leadership of their

teacher).

The team selects a sequence of sub-areas A, B, C,... leading

to the terminal goal decided upon. Each member of the team codes the

program for one of these areas. Figure 1 shows an example of a stra-

tegy that might be employed by a team member in writing a tutorial

exploring sub-area A. Since he uses line numbers 1000 to 1999, his

work will mesh with the student exploring sub-area B who has line

numbers 2000-2999. and so on.

(Insert Figure 2 Here)

Despite the relatively complex branching involved in this scheme,

we find that teachers and students have no difficulty at all in work-

ing at this conceptual level right from the start (compare with the

usual "find the sum of the first 100 integers" example in beginning

programming courses). They also have no problem in coding such a

scheme in BASIC since the suggested ranges of line numbers preclude

clashes. The difficulties that do arise come from the traditions

associated with algorithmic languages, and are of three kinds:

(1) Annoyance type constraints.

Creating the blocks of text symbolized by the rectangular boxes

shown in Figure 1, or supplying a variety of reinforcement messages,

come under this heading. NBS allows for several ways around the

repetitious use of PRINT "..." to handle this. For example

1000 PR. " (text)

(text)

(text)

RESENTATION AND SCAN
1000-1199

100

1000

1090

1100

1200-1399

General explanation,
initialize counts

Section A
Explanation
Question 1 on A

z
1110 Scan for Error #1

NO

1120 Scan for Error #2

NO

1130 Scan for Expected R

I
NO

1140 (Set counters,scores

1150 Test criterion FAIL
for continuing

1160

1180

1190

"SORRY--YOUR RESPONSE
NOT UNDERSTOOD"

Rephrase Explanation
"PLEASE ANSWER AGAIN"
Rephrase of Quest. 1

GOTO 1100

Notes student only sees
material in rectangular
boxes like this.

(All other steps are
for control.

1

(REIN)

1200 Question 2 on A (to
1220 verify understanding)

1230

1240 (Scan for Expected R

NO

1250 (Set countersescores

FAIL
1260 (Test

1270.

1290

GOTO
IPASS 9900

"NO "' -Explain
Expected Response
"NOW LET'S RUN
THROUGH THIS SEC-
TION AGAIN"

1299 GC0-4TO1000)
(RaiN)

1400-1499 and 1500-1599

I

1400 Set cntrs,D1

FAIL1410

1420

1435

1440

ASS

"NO..."
Sub-explana.
Sub-question

GOTO 9907)

REIN)

1500

1442 Scan Exp. R 1530

S

"NOW LET'S GO
BACK TO ORIG.
PROBLEM" Re-
state Q. 1.

NO 1540 CGOTO 1100)

1444 (Set cntrs,0

2

1

FAIL I

1448 Test

1450

1480

"NOI" -Rephrase
sub -explanatn.
Give hint, ask
sub-question.

1490 (GOTO 1440

9900

"PLEASE LOG
OUT AND TAKE
THIS PAPER
TO

j 1350

FIGURE 1
Print
Score

1360

Reset
ctrsesc

1370

GOTO 2000
(Section 8)

.0

10

is a legal construct. An alternate manner of creating blocks of text

is to precede and follow any text with the statements "FRAME" and

"END OF FRAME". Reinforcement messages sequentially selected from

two circular lists REIN and RRIN (really reinforce!) are supplied

upon calls to these lists within scan statements (see line 200 in

the example below).

(2) Difficulties that confound the non-programmer.

The initialization and incrementing of counters or scores, and

the testing of these quantities to effect branching turn out to be

confusing ideas for people not brought up in the algorithmic tradi-

tion. The use of "FOR" loops causes even more consternation. These

difficulties are not permanent, and the ways of the world of com-

puting are eventually found to be valuable. To bridge the gap, how-

ever, we find the use of a new "filter" command of the form

IF PASS > 3 THEN 850

(which might preferably be read as "PASS 3 TIMES THEN GO TO 850")

of great value. The command does just what it says, and provides

exactly the kind of looping control that is familiar territory for

a teacher. Once it is in use, we find it very easy to introduce in-

crementing via assignments of the form LET S = S - 10, with full ap-

preciation of the consequences of this "strange" operation.

Other uses of the PASS command are possible for fancier

control, and several versions of a REPEAT statement will provide

for additional looping control.

11

(3) Difficulties that confound programmers.

While we don't try to encourage too much "cuteness" in tutorial

programs (although student authored programs can capitalize on local

humor), we find that people are quite a bit more creative when re-

sponses in free form are permitted. This implies the ability to

scan a response in a fairly general manner. To accomplish this, the

first version of NBS/CATALYST permitted statements of the kind

100 INPUT R$ (R$ thus holds the response typed by the student)

200 IF R$ CON (TAINS) (THE) WO (RD) "MARINE" AND "PRESSURE" BUT NOT
"FORCE" REIN, (THEN) GO TO 3510

The "WORD" modifier says we accept the string "MARINE" only if

it is not part of another word. Thus "SUBMARINE" would not be ac-

cepted. The rest of the syntax is self explanatory.

These statements were handled by being converted (through a pre-

processor) to legal NBS statements of the form

IF ICO (R$,"MARINE",1) AND ICO (R$,"PRESSURE",0) BUT NOT ICO (R$,
"RPM",0) CALL REIN, GO TO 3510

The preceding makes sense in NBS because of the ability to define

functions like ICO or subroutines like REIN. Our high school stu-

dents accidentally discovered the functions, figured out how

the third parameter acts to strip off special symbols before de-

ciding what a "word" is, and proceeded to always use the function

call form. Although our staff never would have contemplated giving

12

a group of beginners a lecture on "the use of implicit function calls

with Boolean return values", it turned out to be a concept that was

easily assimilated in the proper context. We suspect that we can

therefore continue to use the second form for many users.

Examples of two other useful scan routines are:

(1) IS (R$,A$ 1)

"IS" returns the valueltruelwhen R$ matches A$ as a word. A little

thought shows that the only Boolean connector that should really be

used between two IS calls is XOR, although in practice OR has the

same effect.

(2) IBEP(R$,A$,1,B$,0)

"IDErreturns the value'true'when the word A$ is found in R$ before

the stringB$, where 1 and 0 specify word and string respectively.

There is no limit to the number of such routines available in

NBS. Normally we expect that an experienced programmer will write

these functions according to the specifications of the users, although

we recently had an eleven year old student write routines which pro-

vide complete cursor control for NBS on Datapoint 3300 terminals.

The preceding routines emphasize the handling of non-numeric

responses. When numeric responses are requested, the normal NBS

syntax handles things nicely. A frequent pattern used by our authors

for such cases is the following:

(1) A problem is presented, but with data supplied

by either a random number generator or the user

13

himself. In this way the drill or tutorial

does not have "known" answers.

(2) Standard NBS statements calculate the correct

answer and store the result in a variable,

say A. (The user of this program doesn't see

this happening.)

(3) The user is then asked for his answer, and his

response is accepted if it agrees with the cal-

culated answer within say 3 per cent.

One coding for this last step might be

300 INPUT R

400 IF (R .03*R) < A AND A < (R + .03*R) CALL REIN, CO TO 900

The random generator is also used to select general data to

make CAI programs more interesting. For example, aprogram written by a

geography teacher invites the student to "discover" a country ran-

domly selected by the computer. The student asks questions based

on a map he has in order to narrow down the country before making

his guess. A selective scoring system which the student sees after

each of his inputs (questions or guesses) encourages good questions.

Most students end up with a thorough assimilation of the essential

features of the map in short order, which of course is the educa-

tional goal.

Deliberate inefficiencies are used in some of our codings to
help beginners understand concepts; this also invites user modifica-
tion of programs which is sound pedagogy.

14

6. MULTI-LEVEL BASIC FOR MIXING SOLO AND DUAL MODES

The feature of the NBS system that most excites the educators

we have worked with is the option that a student has of not answer-

ing an input request made of him by a DUAL mode program until he

has done a little SOLO mode exploration on his own. The student

does this exploration at the same terminal used for the dual lesson,

with no break in the flow of the overall session, and with the full

power of NBS available to him. We tell students that the best thing

that can happen as a result of such exploration is that they later

contact their teachers with their hard copy demonstration of explora-

tions not anticipated by the original author.

The best way to illustrate the use of this feature is by way

of example. The illustrations are meant only to suggest applications,

and are not intended to typify anything resembling good CAI program-

ming. In each example we show a listing of the NBS tutorial program,

followed by a student interaction with that program, where the stu-

dent accesses his own NBS system by typing @NBS.

Example 1

LISTING:

>10 PR."THIS IS A TRIVIAL EXAMPLE OF A TUTORIAL WHERE

YOU MAY USE @NBS TO RETRIEVE.DATA FROM THE FILE /RIPLEY/.

DO YOU HAVE YOUR FILE INSTRUCTION SHEET WITH YOU?"

>20 LET Y$=",YES,YUP,SURE,OF COURSE,AFFIRMATIVE,"

>30 INPUT R$

>40 IF IMIV(R$,Y$,O) GOTO 70

>50 PR."PLEASE LOGOUT AND OBTAIN THE FILE INSTRUCTION

SHEET. PRACTICE USING IT ON A TERMINAL BEFORE TRYING

THIS LESSON."

>60 STOP

>70 PR."HERE IS YOUR FIRST QUESTION.....

NAME AN OBELISK FOUND IN AFRICA"

>so INPUT R$

>90 IF ICO(RWKARNAK",1) CALL RRIN,GOTO 120

>100 PR."SORRY - YOUR ANSWER ISN'T ONE WE ANTICIPATED.

WE HAD THE 'TEMPLE OF KARNAK' IN MIND"

>120 PR."LET'S TRY ANOTHER QUESTION

ETC.... *****

>130 END

AN INTERACTION:

>RUN /TRIVIAL/

THIS IS A TRIVIAL EXAMPLE OF A TUTORIAL WHERE

YOU MAY USE @NBS TO RETRIEVE DATA FROM THE FILE /RIPLEY/.

DO YOU HAVE YOUR FILE INSTRUCTION SHEET WITH YOU?

?YUP

HERE IS YOUR FIRST QUESTION.....

NAME AN OBELISK FOUND IN AFRICA

?@NBS

VER. AUG 12 17:20

>OPEN /RIPLEY/ FOR INPUT 2

>INPUT FROM 2, A$(I) FOR I=1 TO 5

>PRINT A$(I) FOR I=1 TO 5

4 ITEMS :

THE WASHINGTON MONUMENT

THE HONG KONG HILTON

THE TEMPLE OF KARNAK

THE HANGING GARDENS

15

16

>CLOSE 2

>EXIT

RESPOND TO LAST INPUT REQUEST

?THE TEMPLE OF KARNAK IS THE ANSWER

VERY GOOD INDEED!

LET'S TRY ANOTHER QUESTION

......ETC

Example 2

LISTING:

>100 PR."SLIDE RULE DRILL: ESTIMATING CUBE ROOTS"

>110 REM WE ASSUME USE OF A RANDOM GENERATOR AND A

>120 REM LINEAR TRF TO SUPPLY A VALUE FOR X IN LINE 130

>130 LET X=37595.4

>140 REM WE ASSUME THAT A SUBROUTINE WOULD BE CALLED IN LINE

>150 REM 160 FOR CALCULATING ANSWERS TO MORE GENERAL PROBLEMS

>160 LET C=30.333333

>170 PR."PLEASE ESTIMATE THE CUBE ROOT OF":X

>180 INPUT R

>190 IF R>C-C*.05 AND R<C+C*.05 CALL REIN, GOTO 300

>200 IF R>=C+C*.05 GOTO 240

>210 IF R<=C-C*.05 GOTO 260

>220 PR."DO NOT UNDERSTAND - PLEASE REPEAT"

>230 GOTO 170

>240 PR."NO -- HINT: YOUR ESTIMATE IS TOO LARGE"

>250 GOTO 170

>260 PR."NO -- HINT: YOUR ESTIMATE IS TOO SMALL"

>270 GOTO 170

17

>300 PR. "LET'S TRY ANOTHER - IF YOU WISH TO"

>310 PR."STOP AT ANY TIME PRESS THE 'ESC' REY"

>320 GOTO 130

>330 END

AN INTERACTION:

>RUN /SLIDES/

SLIDE RULE DRILL: ESTIMATING CUBE ROOTS

PLEASE ESTIMATE THE CUBE ROOT OF 37595.4

310

NO -- HINT: YOUR ESTIMATE IS TOO SMALL

PLEASE ESTIMATE THE CUBE ROOT OF 37595.4

360

NO -- HINT: YOUR ESTIMATE IS TOO LARGE

PLEASE ESTIMATE THE CUBE ROOT OF 37595.4

?@NBS

VER. AUG 12 17:20

>5 INPUT A,B

>10 FOR I=A TO B

>15 PRINT I;I*I*I

>20 NEXT I

>25 END

>RUN

335 40

35 42875

36 46656

37 50653

38 54872

39 59 319

40 64000

>RUN

?30 35

30 27000

31 29791

32 32768

33 35937

34 39304

35 42875

>PRINT 33.4*33.4*33.4

37259.704

>PRINT 33.5*33.5*33.5

37595.375

>EXIT

PLEASE RESPOND TO LAST INPUT REQUEST

333.5

CORRECT

LET'S TRY ANOTHER - IF YOU WISH TO

STOP AT ANY TIME PRESS THE 'ESC' REY

PLEASE ESTIMATE THE CUBE ROOT OP......

?++ESC: 180

18

19

7. SUMMARY

Although the emphasis in the preceding description of the

NEWBASIC/CATALYST SYSTEM has been on its application to CAI, we

feel that the true potential lies in the way the system invites

users of all ages, talents, and backgrounds to tap the full power

of computers for learning on an individually tailored basis.

Some of our students are already making use of the fact that NBS

can call on a very extensive library of FORTRAN routines. This

really means that these students are looking in on much of

the history of computing, but only as they are ready for each

item. Thus students who a few months ago thought that generating

factorials was 'higher math' are now using the Gamma function call

with a pretty good appreciation of what this represents.

The fact that NBS resides in a general purpose time-sharing

system is also being taken advantage of, with a few students begin-

ning to explore everything from assembly language to general simu-

lation languages. We are quite convinced that nothing less than

the power and complexity of such a system is a proper match to the

wondrous potential of the human learner, and recommend that educators

give serious consideration to thinking at this level when investi-

gating computer technology for their schools.

7

